Chapter 2

Processing the statistical material

2.1 Plots of frequencies

Definition 2.1 We have data file of size n: x1,...,x,. Let a be minimal
value, b maximal value: T, = @, Tyar = b.

1. Interval < a,b > 1s called variational field
2. x = b — a is called variational range.

3. Variational field < a,b > is decomposed into smaller parts, called classes

1
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< ag, b >.
4. The width h of a class is h = b, — a;.

5. The value z;., which 1s usually the center of the class, stands for all values
belonging to the class, is called class mark.

During the decomposition we will think of this rules:

1. If the data file contains only little different values, all of them will be considered
as a class ;.
If the data file contains plenty of different values, we esteblish classes. The

width h can be h = 13- (b — a).

Or we can choose the number of classes k usually between 8 and 20. k =~

3,3log(n) or k = /n.

2. If more than one value fall on the border of two classes, we give half to first class
and half to second class. If one remains we decide by coin.

3. If there are only little values in the edge classes, we can combine those classes
in one wider.
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Definition 2.2 Types of frequencies:
1. The number of data in a class 1s called absolute frequency f;.

2. a) % is relative frequency,

b) 100 % 1s percentage relative frequency.

3. Cumulative absolute frequency
k
Fe=) 1;
j=1
4. Cumulative relative frequency FR;
k
Ji  Fy
Ry = ==
-y Lt

Remark 2.1 If we have r classes, then
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1. .
> fe=n
k=1
2.
F.=n
3.

k=1

Definition 2.3 Tabel of frequency distribution s a table where all abso-
lute or relative frequencies are summarized.

Example 2.1 The numbers of phone calls during 1 minute recorded at phone
centrale is shown in the table. The n = 60.

9,2,2,9,1,1,0,4,2,1
1,4,0,1,2,5,1,2,5,2
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3,0,2,4,1,2,3,0,1,2
1,3,1,2,0,7,3,2,1,1
4,0,0,1,4,2,3,2,1,3
2,2,3,1,4,0,2,1,1,5.
The number of phone
during 1 min Absolute frequency | Relative frequency
0 8 0.133
1 17 0.283
2 16 0.266
3 10 0.166
4 6 0,1
5 2 0,033
7 1 0,016
Total 60 1

Table 2.1: The table of frequency distribution.

The data file represents n realizations of a random variable X. From law
of large numbers, % estimates probability, that X falls in k-th class, thus pp =
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~ Ik
Definition 2.4 Types of frequency plots:

1. Histogram contains of rectangles with base < aj, by > on axis x and
with hight coresponding to apropriate frequency. Histogram of relative
frequencies aprorimate density of random variable X .

2. Polygon is pointed line with points at (x, fr) (for absolute frequency.

3. Ogive s polygon for cumulative relative frequencies, it aproximates disri-
bution function of X.

2.2 Characteristics of location

Definition 2.5 Consider data file with values x1, xo, ..., x,, which is devided
into r classes.
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Figure 2.1: Histogram and ogive for data file from Example 2.1

1. Arithmetical average X

I 1
X == — 2.1
0 2t 2 @

2. Geometrical average X,

Xg: {‘/xl-xg-...-xl (22)
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3. Harmonical average X,

_ 1 lem 1 1< f
X, = — wh A:_E _:—g —. 2.3
h= o tnere n<= . n X (2:3)

1=1

In Formulas 2.1, 2.3 are two expressions. First for unsorted file, second for
soted one.

Theorem 2.1
X, <X, <X.
The sorted data file
X(1)7 X(2)7 SR 7X(n)7
consists of X () the smallest value, X(9) second smallest value, ... , X, the highest

value.

Definition 2.6 Median is designated with the dependence on number of data.
If n is odd, then the median x is the middle value

= Ay
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If n is even, then the median I is the mean of two middle values

A+ A (g
5 :
Median is special case of sample kvantil.

T =

Definition 2.7 Modus is the value with highest absolute frecuency. It need

not be defined unequivocally.

2.3 Characteristics of variability

Definition 2.8 Characteristics of vartability:

1. Variance of data file is

n

n—1 n—1

k=1

e D[S S R AT o8

2. Standard deviation is

VS22 =8 >0.

(2.4)

(2.5)
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3. Average deviation is

1 ]« _
1=1

k=1

4. Variational coefficient is

v="1- (2.7)

Remark 2.2 The variance s defined by 2.4, but for computation we can also
use

1 n - 1 L n o —
S? = 7) — X? = T7 — X2 2.8
Remark 2.3 The data file represents n realzations of a random wvariable X.
All characteristics of location aproximates expectation of X. The variance of
data file aprorimates the variance of X.
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Random sample

Types of random samples
a) Simple random sample with returning
b) Simple random sample without returning

c) Stratified random sample deviding the space into disjunct sets and making the
random sample within each set.

d) Systematic random sample every k-th element.

11
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Range of random sample

a) Small: n < 30.
b) Big: n > 30.

We will be interested only in simple random sample with returning. It is:
Definition 3.1 The statistical sample 7., represents a random variable X.
Random sample from distribution of X, is n independent realizations of X,

which are giwen by independent random variables X1, Xo, ..., X, with same
distribution as X.

Definition 3.2 The charakteristics of statistical sample Z (random variable
X ) will be called theoretical. Charakteristics obtained from empirical random
sample is called sample).

Definition 3.3 Let X1, ..., X, s a random sample from distribution with ex-

pectation [ and finite variance o>.

1 < 1 _
X:E;Xi, 5% = Z(Xi—X)z.
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X is sample mean and S? is sample variance.

Theorem 3.1

0.2

EX = p, VarX = —, ES? = 0.
n
Theorem 3.2 Strong law of large numbers
X —pu almost surely.

Convergence almost surely means, that exists only a set (A C ) of probability 0
(P(A)=0), for which the expression does not converge.

Theorem 3.3 Random sample from normal distribution Let X,..., X,
is random sample from N(u,o?), where 0* > 0. Then

o X ~ N(u,%).
o Ifn>2, then (n —1)S%/0? ~ \?_;.
o I[fn>2, then X and S? are independent.

o I[fn>2, then % n e~ t,_q.



Chapter 4

Parametres estimates

Point estimates of mean and variance: Theorem 3.1 says that
X is unbiased estimate of mean p (EX = pu),
S? is unbiased estimate of 2.

Interval estimate
(Coeficient of reliability) ¢ = 1 — a. « is usually chosen 0.05, 0.01.

14
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Definition 4.1 Let By, By be such that for o € (0,1) holds

P(BI<B<B)=1-a.

Then the interval By, By is called confidence interval for parameter § with
reliability 1 — .
Let By be such that for a € (0,1) holds

P(ﬁSBz):l—OA

Then the interval By s called upper confidence bound for parameter (8
with reliability 1 — .
Let By be such that for a € (0,1) holds

P(BZBl):l—Oé.

Then the interval By is called lower confidence bound for parameter 5 with
reliability 1 — .
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4.1 Confidence intervals for parametrs of normal distr.

Let X1, ..., X, be random sample from N(u, 0?), parameter o> > 0 is not known.

Then by Theorem 3.3 B
X —

thus by definition of critical values of students distr. is

P [tn_l(a/m < X; Bm <ty (1 - oz/2)] =1-aqa,

By reordering we get bothsided confidence interval for mean p of normal distr. with
reliability 1 — «

) S - S
[X ~ta(1 = a/2) = X b1 04/2)%] . (4.1)

confidence interval for variance o can be derived similarly.

(n— 1)52/02 ~ X%—r
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PP (5)sm-nset<d, (1-5)] =1-«

By reordering we get bothsided confidence interval for variance o of normal distr.

S* n—1) S%*n-1) | 45
[le D (%)] 2

with reliability 1 — «




CHAPTER 4. PARAMETRES ESTIMATES 18

4.2 Confidence interval for mean by use of CLT

If the variables do not have the normal distribution, we can not use the previous.
But if there are more vaiables, at least 20, we can use CLT.

Let X1,..., X, be random sample from distribution with finite mean x and
finite variance 0. Then by Central limit theorem
X —p

VR e @~ N(0,1)

has asymptoticaly normed normal distribution. By the definition of critical value
of the normed normal distribution is

Q X —u Q
Pl—u(l——=)< <u(l—=)| =1-
—u- D <X vasu- ) -1-a
by reordering we have bothsided confidence interval for mean p with reliability 1 —a

[X (1 — %)% X +u(l %)%] | (4.3)
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Parametrical tests

Hypothesis: Hy (zero) against alternative Hj.
Assume that distribution of the random variable depends on parametr 6.

The zero hypothesis is then
H() 0 = 90.

Alternative hypothesis can be either both sided alternative
Hl L0 7é 807

19
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or one sided alternative
H12(9>(9()OI’H119<¢9().

Two mistakes are possible:
We reject Hy, but Hy is true - error of first kind.
We do not reject Hy, but H is false - error of second kind.
We want both mistake to keep down!
Test:
Construct statistic T" from random sample X7, Xo, ..., X,,.
If T is in critical range W, we reject H.
If T"is not in critical range W, we do not reject H,.
We can control error of first kind only. We set the probability of this error to be
a € (0,1). Usually o = 0.05 or e = 0.01. «v is called significance level of test.
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Remark 5.1 Nowadays the statistical software (Statistica, S+, SAS, R, Ez-
cel) gives reached level (called P-value, significance value). It is the smallest
level for which we still reject Hy.

Thus if a = 0.05 is chosen and P-value is less than 0.05 (or equal), then
we reject Hy with significance level o = 0.05. If P-value s greater than 0.05,
then we do not reject Hy with significance level o = 0.05.
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5.1 One sample t test

Let X1, ..., X,, be random sample from N(u, 0?), where n > 1. Parametr o> > 0
is not known. We want to test

HO - = Ho,
where g is given number, against the alternative

Hy:p# o
. Hypothesis Hy is rejected if X is rather far from po. Under Hy the statistic T

has _
T — (X - Mo)\/ﬁ
N S

students distribution with n-1 degree of freedom. From definition of the critical

~ tn—l

values, we have

PT| > t,1(1 — a/2)] = «.
Thus Hj is rejected with significance level «, if

T >t i(1 — a/2).
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p-value is computed from the distribution function of ¢:
p=201-F,(T])

In case of one sided alternative Hy : p > pg, resp. Hy @ p < pgy is Hy

rejected, if
T>t,1(1—a), resp. T < —t, 1(1 —a).

p-value of the one sided test is:

p=1—F_ (T), resp. p=1F__(T)
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5.2 Test about variance of normal distribution.

Let X1, ..., X,, be random sample from N(u, 0?), where n > 1. We want to test

L2 2
Hy: 0" = oy,

where o is given number, against the alternative

H, :0%# 0}
. Hy is rejected, if S? is rather far from 08. Under Hj the statistic 1" has
(n —1)87 2
T=""7
0_(2) Xn—1

v distribution with o n-1 degree of freedom. From definition of the critical values,

we have
a0

P (5) -0t <n(1-5)| =1-«
Thus Hj is rejected with significance level «, if
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p-value is computed from the distribution function of x?:

p = min (2(1 _Fs (T)),2(F. (T)))

Xn—1 Xn—1

In case of one sided alternative Hy : 0% > 03, resp. Hy : 0? < o} is Hy

rejected, if
T>x, 1(1—a), resp. T <y, (a).

p-value of the one sided test is:

p=1=Fpg (T), resp. p=~Fg (T)

Xn—1
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5.3 Paired t test

Consider random sample (Y7, Z1), (Ya, Z3), ..., (Yy, Z,) from two-dimensional nor-
mal distribution with expectation (uy, p2). We want to test

Hy:pp—pe=A

against alternative Hy : py — po # A, where A is given number (usually A = 0).
We set
Xl:}/1_ZhXQ:}/Q_ZQ)"')Xn:Yn_Zn'

The variables X1, Xo, ..., X, are independent. Assume, that X; ~ N(u,0%),i =
1,2,...,n, it = pq — po. Thus the task is transferred to one sample t test. From
variables X1, Xs, ..., X,, we calculate X and S?. Then Hj is rejected with signifi-

cance level a, if B
(X = A

- >t 1(1— a/2).

|T|—\

p-value is:
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Paired t test is used in situations, when we have, for every object, from n
measured objects, 2 measuranments. The objects are independent but not mea-
suranments on one object. The paired t test is used for example, when we test
effectiveness of the medicanment on n patients, and Y; are measuranments before
and Z; after medicanment is taken.



CHAPTER 5. PARAMETRICAL TESTS 28

5.4 Two sample t test

Let X1, Xs,..., X, be random sample from N(u1,0?) and Y3,Y5,...,Y,, sample
from N(ug,0%). Assume that the two random samples are independent. Assume
that n > 2,m > 2,02 > 0 and o2 is not known. We want to test

Hy:pyp—pe=A

against Hy : pup — pe # A, where A is given number (usually A = 0). Denote
X, 8% and Y, S% charakteristics of appropriate samples. Then Hy is rejected with
significance level « if

T |= > ool — a/2).

X-Y-A .\/nm(n—i—m—Q)
Vin = 1S5+ (m = 1)55 notm

p-value is:
p=2(1-=F,, ()

two sample t test is used, when n patients try medicanment A and other m
patients try medicanment B.
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Often one uses two sample instead of paired and vica verca. Remember that
two sample can be used only when independence of samples is satisfied.
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Assumptions: Independence - most important.
Normality - Greater sample - Since CLT - OK
Small sample - nonparametric tests must be used.
Homogeneity of variances in twosamle t test - is tested by the following test. If it
is not satisfied use weighted least squares methods.
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5.5 Test about homogeneity of two variances

Let X1, Xy, ..., X, is asample from N(uy, o) and Y1,Y5, ..., Y,, is a sample from
N (g, 05). Assume independance of samples and that n > 2,m > 2,0} > 0,05 >

0. We test the
2

Co 2
against
L2 2
Hy : o] # 05

. Since S% is unbiased estimate of oF and S% is unbiased estimate of o3, we can
2

expect, that under Hy the fraction 5% will be close to one. Thus Hy is rejected, if

Sy
S% S%
S_}Q/ S kl or S_%/ Z k?a
while
1 Qa
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where Fj,_1 ,—1(/2) is critical value of Fisher-Snedecor distribution with n-1 and
m-1 degree of freedom. p-value is:

| s2 52
p — mnin 2<]‘ T FFn—l,m—l(S_2>)7 2(FFn—1,m—1(S_2))
Y Y
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5.6 Test about mean with use of CLT

We do not assume normality, but we need at least 20 or 30 data.
Let Xi,...,X, be random sample from a distribution with finite mean pu
and finite variance o?. We test

HO:M:/'L(L

where 1 1s given number, against alternative

le,u#,uo.

Hypothesis Hy is rejected, if X rather far from po. By CLT under Hy T has
asymptoticaly

X —
o
normalized narmal distribution.

Again by definition of critical values is asyptoticaly

p \T]gu(l—%) —1-a
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Thus Hy is rejected with significance level «, if

(87
7] > u(1 - 5).

p-value is computed from distribution function of normalised normal distribution:
p=2(1—2(T)))

In case of one sided alternative Hy : pu > pg, resp. Hy  p < po is Hy
rejected, if
T>u(l—a), resp. T < —u(l—a).

p-value of the one sided test is:
p=1—&(T), resp. p=P(T)

In case when o is not known, we use unbiased estimate S? in computation

of T



Chapter 6
ANOVA

6.1 One-way ANOVA

This is extension of twosample t-test for more than 2 samples. Assume I indepen-

dent samples,
Yit, .o, Yin,  from N(ug,0?)

Y]l,...,Y]nI from N(,LL_],O'Q).
We will test Hy : i1 = ... = puy against, that exist at least two means which are

35
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not equal.
We can write the model - Hy:

Y}j:,u—l—ozi+ez~j,

where 1+ o; = p; and e;; ~N(0, 0?) is the error. Hy can be rewritten to simplified

model:
Yij = p+ e
Test is done in following way. Denote
— Ya+..+Y,, ,
Y, = L T Yy pro ¢=1,...,1
n;

where n = ny + ...+ ny. Total sum of squares Sy is total square error under Hy.

ST_ZZYU Y)? ZZYQ—TLY
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Residual sum of square S, is square error under Hj.
= —2
S 3 DL A 3 BT E St
i i i
Sy = Sp — S, is sum of squares contained in difference of samples. If Sy is small,

then the models are simillar and Hj will not be rejected.

Under H : s
n — A

(I —1)S,
has F' distribution with I — 1 and n — I degree of freedom. Thus H is rejected
with significance « if

Fy=

~ Fr 1n-1

Fy>Frgp-1(1—a).

Characteristic s> = S, /(n—1) is called residual variance and it is an unbiased
estimator of the true variance o2

Assumption Independence, normality (can be broken for a lot observa-
tions) Homogeneity of all variances - Bartlett test. (Statistica - Anova - Assum-

tions)
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Variability sum of squares degree fraction

S of freedom f S/f F
differences S fa=1—-1 Sa/fa  Fa
residual S, fe=n—1 Se/ fe
total St fi=n—1

Table 6.1: ANOVA table

Remark 6.1 One can think of applying a set of I(I —1)/2 two sample t-tests,
instead of one way anova. But if every test would have significance o, the
common significance of all tests together would me much higher.

In the case of rejection Hj, it is usually needed to decide which samples
are different. Tukey multiple comparison method (Statistica - Anova -
Post-hoc).

6.2 Anova - two ways

Model:
Y;j:,u‘l‘Oéi‘l—Bj—i—eij, kde izl,...,], jzl,...,J (61)
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where p, o for o = 1,...,1 and 8, for 7 = 1,...,J are not known parameters
and e;; ~N(0,0?) are errors. This means that Y;; depend both on column and
row. Furthermore in each row we have same number of event. T'wo parameters are

ZOAZ‘:O, Zﬁj:O.
i J

We want to test Hy : oy = ... = ay = 0 (e.g. data does not depend on
rows), thus the simplified Hy model is one way anova:
Y;j :M+6j+€ij-
(Statistica - Anova - Main Effects Anova)
In the case of rejection Hj, it is usually needed to decide which samples

are different. Tukey multiple comparison method (Statistica - Anova -
Post-hoc).

Remark 6.2 More models:
More data for each group (Statistica - Anova - Main Effects Anova)

Yiip=p+ao;+B8;+eijp, kde i=1,....I, j=1,....J, p=1,...,P.

needless therefore we set
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Variability sum of squares degree ratio

S freedom f S/f F
Trows SA fA:[—l SA/fA FA
columns Sp fe=J—-1 Sg/fs Fs
residual Se fe=n—-I—-J-1 S./fe -
celkov St fi=n-—1 - -

Table 6.2: Anova Table two-way anova

(Statistica - Anova - Main Effects Anova)
Interactions (Statistica - Anova - Factorial Anova):
Y;jp = U + o; + Bj + )\z’j + Cijp-
Repeated measuranments - Here we assume dependence between obser-
vations in k-th level (Yijp1, ..., Yijpr) - (Statistica - Anova - Repeated Measures

Anova):
Yijpe = 0+ i + B + vk + Aij + €ijpie-
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Nonparametrics

In Statistica - nonparametrics statistics we can find nonparametric variations of
tests which were described in parametric chapters. Instead of expectations we
compare the whole distributions, but the tests are mainly sensitive for medians
only.

Two sample t-test ~ Comparing two independent samples - usually Mann-
Whitney U test or Wilcoxon test is preferred.

One way ANOVA ~ Comparing multiple independent samples - usually
Kruskal-Wallis test is preferred. Multiple comparison can be done here also.

41
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Paired t-test ~ Comparing two dependent samples - usually Wilcoxon test
is preferred. When only data of character +1, -1 (better, worse) is available, then
sign test 1s appropriate.

2 way ANOVA ~ Comparing multiple dependent samples - Friedmann test
is preferred.

Correlation ~ Spearman correlation is preferred.
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Correlation analysis

Independence = the uncorrelatness p = 0.
Thusift Hy : p = 0isrejected, then we can reject also the hypothesis of unbiasedness.

43
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8.1 Sample correlation coefficient

We have random sample (X1, Y1), (X5, Y3), ..., (X,,Y,) from two dimensional dis-
tribution. The correlation coefficient is
~ Cov(X,Y)

vV VarX Vary

For estimates of Var X and Var Y we use sample variances

- _ 1 _
i=1 1=1

P

ES% = VarX and ES: = VarY'. Similarly we define sample covariance

1« . .
Sxy =—— > (X; = X)(V; -Y),

n—1H4%
1=1

here ESxy = Cov(X,Y). Thusif S% > 0and S% > 0, we define sample correlation

coefficient r as
Sxy

VS%SE
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From Schwarz unequality —1 < r < 1.

r is not unbiased.

For (X1,Y7), (X2, Y2),...,(X,,Y,) - twodimensional random sample from
normal distribution and Var X > 0, Var Y > 0, |p| < 1, we have that

1—p?

Er =p— +o(n™t),

n
where o(n™1) denotes function f(n), for which lim,, @ =0.
We test now Hy : p = 0 against Hy : p # 0. Under Hy and assumption of
normal random samples has
T = \/%ﬂvn—Q Ntn_g
Students distribution with n — 2 degree of freedom. Thus Hj is rejected with
significance level «, in case that

T| >t 5(1 — a/2).

Here the normality is important assumption. If normality is not satisfied use
nonparametric Spearman correlational coefficient.
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Linear regression

9.1 Liner regression with one explanatory variable

Regression model

Y = f(z)
explains dependence of Y on values x through f. The aim of regression is to find
function f, from n observed pairs

(':Cla y1>7 (3727 y2)7 I (Q?n, yn)7

46
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where x; are independent values, explanatory variable xz and y; are dependent
values, ascribed variable Y. Assume that y; are measured with error e;.

For point estimates no further assumption is needed.
For interval estimates and test we assume normality of error - N(0, ).

Thus we have n independent equations

Yi=f(zi)+e, i=12...,n.
Linear regression
flx) =B+ Bz
We want to estimate parameters 5y and ;. This is done by least square method.

We search By and (; for which the sum of squares of errors is minimal. Thus we

are looking for minimum of

n

9(Bo, 1) = Z(Y; — (Bo 4 B1-x))*.

1=1
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48
Thus we solve the set of equations
09(bo, A1) _ 0 09(B0, B1) _ 0
050 7 05
The result is
Sy —2) - Y, S xY; —nzY — _
by = = bp=Y — by - 9.1

where T = %Z z;and Y = %Z Y;. Estimates by, by are best unbiased estimates,

e.g. by, by are unbiased (Eby = £y, Eb; = (1) and have the smallest variance from
all unbiased estimators.

Minimum of g

Se=glbo,br) =) (Yi—(bo+bi-2:)?=) Y2—byy Yi—biy a:¥;

is called residual sum of squares. The estimator of variance of errors o? is
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Total sum of squares
Sp=> (Y,=-Y)
express total square error of regression model.
The appropriateness of the model is expressed in coefficient of
determination

Se o ST - Se
St Sr
which express which part of total error St is explained by the regression model. (.S,
contains, what the regression model does not explain). It can be calculated also by

R2 _ Z(K o 2)2
(Vi =Y)*
where ?Z = ]/‘\(a:l) —= by + by - x; is regression estimate in ;. As close is R? to 1, as

better the model is.
The most common question is, if the model can be simplified, so that Y; do

R*=1-

not depend on x;. We test
Hy: 51 =0 against Hy:p; #0
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Under H() has )
T = b \/§ 2 _ 72 t,
S x; nx -9

students distribution with n — 2 degree of freedom. Thus if |T'| > t,,_o(1 — «/2) we
reject Hy with significance «v. If this Hy) is rejected we confirm the linear dependence

of Y; on x;, which is masked by random errors e;.
Confidence interval By standard approach we make confidence interval
of 81 with reliability 1 —

(bl__tngﬂ_—-a/Q)s ; +_u12(1——a/2)3>‘

\/Zx%—n#’ ! V> x? — nT?

Often we need confidence interval for By + [1x:

_|_

S|
A

+
St —nx

This interval cover the value By + [ix with probability 1 — a. Such intervals
constructed for all x € [minx;, maxx;], is called belt of reliability around
regression function.

1 _ 72
<%+hx—m2ﬂ—aﬂﬁ R G x[w%+mx+%4u—amp
n



CHAPTER 9. LINEAR REGRESSION 51

Example 9.1 The number of hours in use in month (x;) the expenses (Y;).

v, | 2751 3501 250 5251 375 400] 300
Y| 149170 140 164 ] 192 200] 165

200+

180+

Figure 9.1:

Interpretation of model: Absolute term by - estimates fix expenses, in-
dependent of length of use. Linear term bix estimates variable expenses per
hour of use.
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9.2 Linear regression with more explanatory variables

We assume model:
Y =By + 51 X1 + ... + B X} (9.2)

For n observations, we have n equations with k+1 unknowns:
Y; :60+61Xi1 +62X¢2+ +5kXi]g—|—€Z', where ¢ = 1,2,...,%, (93)

Here e; are random errors. For point estimates no further assumption is needed.
For interval estimates and test we assume normality of error - N(0, ).
In matrix form we have

Y = X3 +e,
where
Y I Xq1 ... Xy Bo €1
N (RS 15 I IV T R DR Il DR

Y, I X1 -0 Xk B en
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The aim is to estimate parameters 3y, 81, B9, ..., Br. Again by least square method.
We minimize
n

9(Bo, B, -, Br) = Z(Y; — (Bo + BiXit + BoXio + ..+ BeXan)). (9.5)

1=1

Thus we set the partial derivative to be zero

ag(ﬁo’gé;m’ﬁk 22 — (B + 81Xt + BoXip + ... + B Xip))(—1) =0

ag(ﬁoagg.'” =2 Z — (Bo + B1Xi1 + BoXio + ...+ B Xin) ) (= Xi5) = 0,
J

where 7 = 1,2, ..., k.

nﬁo+512X@'1 +522X¢2+ +ﬁkZX¢k = ZY;
i=1 i=1 i=1 i=1
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Bod Xa+BY Xi+5> XpXa+ ..+ Y XuXa=)» YiXy
i=1 i=1 i=1 i=1 i=1

Bo Y X+ B> XoXu+PB Y XuXp+..+8 Y Xjp=) YiXy. (9.6)
=1 1=1 1=1 1=1 1=1

Solving this set of equations gives estimates by, b1, ..., by of parameters 5y, 51, Bs.
In matrix form

(X'X) -8 =X"Y. (9.7)
If (XTX) is regular (e.g. there exists an inverse (X2 X)™1), then the estimator
of parameters 5 = 0y, 01, Bo, ..., B 18
b= (X"X)"'X"Y. (9.8)
The minimum of g is called residual sum of squares
Se=g(b) =Y (Vi — (bo + biwi + bowip + ... + +bpxar))* = Y (Vi = Y7)%,



CHAPTER 9. LINEAR REGRESSION 95

where f/; = by + D1xj1 + boxso + . .. + brayi is regression estimate of value Y;. The

2 2 Se 2

estimator of variance of errors o° is s° = —¢—=. 57 is called residual variance.

Total sum of squares

Sr=) (Yi=Y)

express total square error of regression model.
The appropriateness of the model is expressed in coefficient of
determination

Se . ST - Se
Sr Sr
which express which part of total error Sy is explained by the regression model. (S,
contains, what the regression model does not explain). It can be calculated also by

, (Y -Y)?
TSy vy

where 1/}2 = ]?(SIZZ) —= by + by - x; is regression estimate in ;. As close is R? to 1, as
better the model is.

R*=1-
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Confidence interval with reliability 1 — « for parameters 3; is interval

(bi byt (1 = a/2) - sy (XTX)1 b+ b1 (1 — @)/2) - sy /(XTX)Ml) ,
(

9.9)
where (XTX);;! is element of matrix (X7X)™!, in i-th line and i-th column.

The most common question is if we can simplify the model so that the values
Y; do not depend on z;; for certain j. We test

Hy:B; =0 against H;:f3; #0

Under H, )
J

s+ 4/ (XTX)7 !

has students distribution with n—k—1 degree of freedom. Thus if |T'| > ¢,,__1(1—
a/2) we reject Hy with significance a.

T = ~ ty g1 (9.10)

Sometimes we ask, if more than one explanatory variable can be release. It is
not possible to use two previous tests, because its common significance level would
not be a.
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We test

HozﬁjlzﬁjQZ...:ﬂjl:O, 13]1,,]l§]{5

against alternative that simplified model is not true (e.g. that at least one ;. # 0).
Number [ is the number of parameters to be released. Matrix form of the simplified
model is
Y = X3 +¢,
where matrix X is constructed from X by releasing of columns appropriate to
Bjs Bjys - - -5 Bj- Vector B is constructed from by releasing 3, 5y, . . ., 8j,- Simi-
larly e.
Parameters of simplified model B are estimated by

b=(X"X)"'X"Y. (9.11)
Then the residual sum of squares is calculated for simplified model

ge — Z(Y; - 2)27
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~

where 2 is regression estimator of Y; in simplified model. It is obvious, that g@ >
Se.
Under H,
(n—k—1)(S. — S.)
LS,
has Fj ,_j_1 distribution. Thusif ' > Fj,,_;_1(1—a) we reject Hy with significance

F—

~ E,n—k—l

a and we can not simplify the model.

9.3 Polynomial regression

Quadratic regression:
}/1250+61X2+62X22+627 7::1727 """ y 1,

kde e; ~ N(0,0%),n > 4. Here Y; depends quadraticly on Xj.
If we set Z; = X?, i=1,2,.....,n we have model

}/i:/80+51'Xi+52'Zi+6i7 7:21727 """ ) T
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Here Y; depends linearly on X; and Z;. So the quadratic task were replaced by
linear.
Similarly the regression of higher order.

9.4 Non-linear regression

YZ:f<X276)+627 7;:1727 """ » 1,
where f is regression function and f is vector of unknown parameters. The estimate
of 5 can be found again by least square method, by minimizing

S(B) = (Vi — (X, B))
i=1
This can be solved by statististical software iteratively.
Starting approximation can be found for linearizable models e.g. models
which can be transformed to linear. As an example we look at exponential function:

Y, = Boeﬂlxi +e, 1=12,... , M.



CHAPTER 9. LINEAR REGRESSION 60

In starting approximation we forget the errors e; and make logarithm
mY,=Ingy+ /X;, i=12 ...n
Now with new parameters oy = In 5y and a; = (1, we have linear regression
mY,=ay+aX;, 1=1,2,.....,n.
Some examples of linearizable models:
1. Y = ehthX
2.Y = [y X"
3. Y =0+ biInx
4. Y =1In(By + /1 X)

- 1
DY = Bo+1 X
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9.5 Transformation of the data

Logarithm of the data makes multiplicative model. The data are influenced by

covariates in a multiplicative way:.
Y =Gy + 51X +¢
Y = ePotAX+e
Y = PophiX e

Power transformations Y can help to achieve normality.
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Distribution tests - goodness of fit tests

10.1 Testing normality

For test of normality - use: Distribution fitting - normal - Plot of observed and

expected distribution.

There are two common tests of normality - y? test and Kolmogorov-Smirnov
test. Use option. I prefer x? test for its generality and power.

Here can be fitted also other distributions.

When one perform an residual analysis, usually the informative plot - Normal

62
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probability plot of residuals is use to see the deviation of residuals from normal
distribution. The deviation here detects either wrong model selection or the non-
normality of the residuals.

When we are comparing means of variables and normality is not satisfied and
we have just few data, then nonparametric statistics must be used.

Checking serial correlation: Durbin-watson test in residuals analysis in
regression detect the serial correlation between data. If it detects serial correlation,
the data are not independent and the time series analysis has to be performed.
Unfortunately in Statistica is computed only d statistics. As far is d from 2 as
bigger the serial correlations are.

10.2 Pearsons Y’ test

Use observed versus expected frequencies when you want to perform y? test with
known theoretical frequencies. The description of this test follows.

[t can be used for example for controlling of random numbers generator,
controlling the dice, controlling if you catch same number of fishes in day and in
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night, ...

Let Z1,...,Z, be random sample, where Z;, j = 1,...n can have values
1,...,k. The variables X;, which gives the number of accurences of the result i,
will be called empirical frequencies. Random vector X, ..., X; has multinomial

distribution. We wil test the hypothesis Hj, that theoretical probabilitie of multi-
nomial distribution are equal to the numbers pq, ..., pr. The variables np; will be
called theoretical frequencies. Under H| the statistics

k
Z — ) ~ Xk

1=1

has asymptotically y? distribution with & — 1 degree of freedom. We reject H
when
2 2
X > Xk;—l(l o O‘)?
with significance a.
The 2 is asymptotical, therefore it can be done only when n is big enough.
Usually the test is accepted when
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np; > 5Hqforallt=1,....kand k > 3,
where ¢ is ration of classes, for which np;, < 5, and n.

65
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Contingency tables - Analyzing discrete data

What is contingency table:
Consider random vector Z = (X, Y'), which has discrete distribution. X has

values 1, ..., and Y has values 1,...,c. X and Y corresponds to certain property

(for example sex, education...).
The properties can be

e qualitative

e discrete quantitative

66
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e continuous quantitative with values in classes

Denote probabilties of distribution of Z = (X,Y):

Pij = P(X = ’L,Y :j)api. pr; Py = P Zp@j

Consider a random sample of range n from upper distribution. Number of
cases, when (7, j) appered in the sample will be denoted by n,; (absolute, empirical
frequency). Random variables n;; have multinomial distribution with parameters n
and p;;. Contingency table is then the matrix (n;;). Contingency table is in Table
11.1 with matrix of probabilities (p;;), while

c
:E Nij, E Tjj, n_E § Ny
J=1

1=1 j5=1

and



CHAPTER 11. CONTINGENCY TABLES - ANALYZING DISCRETE DATA

c r T c
n — E TL'j = E n;, = E E nzj.
j=1 =1

=1 j=1
Z Z
Y l..c > Y l..c >
L] pupic | D1 1 | ny..ne | no
r Pr1 .- Prc | Pr. 1 Nyl vov Npe | Ny,
Z P1 - Pc 1 Z nNy... Ne n

Table 11.1: Left: matrix of probabilities, right: Contingency table
The following hypothesis can be tested
e hypothesis of independence of properties X and Y
e hypothesis of homogenity

e hypothesis of symetry

e hypothesis of homogenity for repeated measurenment - McNemars test
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11.1 Test of independence

Hy: X (1. property) and Y (2. property) are independent
Hi: X and Y are not independent.

Theorem 11.1 X and Y are independent if and only iof p;j = pip,, & =
L,...rg=1,....c.

Thus hypothesis of independence can be rewritten into

HO:pij:pi.p.ja iIl,...,ﬂjZl,...,C.

Under Hy statistic
nyn; )2

T C (nZ J—
X' = ZZ j nm? (11.1)

i=1 j=1

has asymptotically distribution x* with (r — 1)(c — 1) degree of freedom. Hj is
rejected if y2 > X%r—l)(c—l)(l — ).
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The 2 is asymptotical, therefore it can be done only when n is big enough.
Usually the test is accepted when
% >bgforalli=1,....,kand k > 3,
where ¢ is ration of classes, for which % < 5, and n. If this is not satisfied some
raws or columns must be combined. That is not possible for 2 X 2 contingency
table. In such case Fishers factorial test can be used.

11.2 Test of homogenity

Or test about sameness of structure. This test sameness of one property under
different condition, which are expressed by second property. For example if length
distribution of catched fish is same in night and day.
Hy: probability p;i, ..., p;- do not depend on the raw index ¢
(e.g. all raws of matrix p;; are same)
Probabilities p;1, ..., p;c corespond relative frequencies in i-th raw of contin-
ni1 Nic

gency table —, ..., — here p;; + ... + p;c = 1 and furthermore we assume that



CHAPTER 11. CONTINGENCY TABLES - ANALYZING DISCRETE DATA 71

raw frequencies n; are set before experiment.

For testing the homogenity we again use statistic x? equation 11.1. Under
Hy has x? asymptoticaly x? distribution with (r — 1)(c — 1) degree of freedom. H,
is then rejected if y? > X%r—l)(c—l)(l — ).
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Further modeling

General linear models - union of ANOVA and regression. The factors can be either
continuous and discrete.

Generalized linear models - Generalization of general linear models, the data can
have different then normal distribution.

For count data Poisson distribution is used.

For discrete data Multinomial distribution is used.

For continuous data one can often use Gamma distribution.

72



