
Chapter 2

Processing the statistical material

2.1 Plots of frequencies

Definition 2.1 We have data file of size n: x1, . . . , xn. Let a be minimal

value, b maximal value: xmin = a, xmax = b.

1. Interval < a, b > is called variational field

2. x = b − a is called variational range.

3. Variational field < a, b > is decomposed into smaller parts, called classes

1
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< ak, bk >.

4. The width h of a class is h = bk − ak.

5. The value xk, which is usually the center of the class, stands for all values

belonging to the class, is called class mark.

During the decomposition we will think of this rules:

1. If the data file contains only little different values, all of them will be considered

as a class xk.

If the data file contains plenty of different values, we esteblish classes. The

width h can be h ≈
8
100· (b − a).

Or we can choose the number of classes k usually between 8 and 20. k ≈
3, 3log(n) or k ≈ √

n.

2. If more than one value fall on the border of two classes, we give half to first class

and half to second class. If one remains we decide by coin.

3. If there are only little values in the edge classes, we can combine those classes

in one wider.
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Definition 2.2 Types of frequencies:

1. The number of data in a class is called absolute frequency fk.

2. a) fk
n is relative frequency,

b) 100 ∗ fk
n is percentage relative frequency.

3. Cumulative absolute frequency

Fk =

k∑

j=1

fj.

4. Cumulative relative frequency Rk

Rk =

k∑

j=1

fj
n

=
Fk

n
.

Remark 2.1 If we have r classes, then
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1.
r∑

k=1

fk = n

2.

Fr = n

3.
r∑

k=1

fk
n

= 1

Definition 2.3 Tabel of frequency distribution is a table where all abso-

lute or relative frequencies are summarized.

Example 2.1 The numbers of phone calls during 1 minute recorded at phone

centrale is shown in the table. The n = 60.

3,2,2,3,1,1,0,4,2,1

1,4,0,1,2,3,1,2,5,2
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3,0,2,4,1,2,3,0,1,2

1,3,1,2,0,7,3,2,1,1

4,0,0,1,4,2,3,2,1,3

2,2,3,1,4,0,2,1,1,5.

The number of phone
during 1 min Absolute frequency Relative frequency

0 8 0.133
1 17 0.283
2 16 0.266
3 10 0.166
4 6 0,1
5 2 0,033
7 1 0,016

Total 60 1

Table 2.1: The table of frequency distribution.

The data file represents n realizations of a random variable X . From law

of large numbers, fk
n estimates probability, that X falls in k-th class, thus pk =
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P (ak ≤ X ≤ bk) ≈ fk
n .

Definition 2.4 Types of frequency plots:

1. Histogram contains of rectangles with base < ak, bk > on axis x and

with hight coresponding to apropriate frequency. Histogram of relative

freguencies aproximate density of random variable X.

2. Polygon is pointed line with points at (xk, fk) (for absolute frequency.

3. Ogive is polygon for cumulative relative frequencies, it aproximates disri-

bution function of X.

2.2 Characteristics of location

Definition 2.5 Consider data file with values x1, x2, ..., xn, which is devided

into r classes.
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Figure 2.1: Histogram and ogive for data file from Example 2.1

1. Arithmetical average X̄

X̄ =
1

n

n∑

k=1

xk =
1

n

r∑

i=1

fixi. (2.1)

2. Geometrical average X̄g

X̄g = n
√
x1 · x2 · ... · x1 (2.2)
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3. Harmonical average X̄h

X̄h =
1

A
,whereA =

1

n

n∑

k=1

1

xk
=

1

n

r∑

i=1

fi
xi
. (2.3)

In Formulas 2.1, 2.3 are two expressions. First for unsorted file, second for

soted one.

Theorem 2.1

X̄h ≤ X̄g ≤ X̄.

The sorted data file

X(1), X(2), . . . , X(n),

consists of X(1) the smallest value, X(2) second smallest value, ... , X(n) the highest

value.

Definition 2.6 Median is designated with the dependence on number of data.

If n is odd, then the median x̃ is the middle value

x̃ = X([n2 ]+1).
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If n is even, then the median x̃ is the mean of two middle values

x̃ =
X([n2 ])

+X([n2 ]+1)

2
.

Median is special case of sample kvantil.

Definition 2.7 Modus is the value with highest absolute frecuency. It need

not be defined unequivocally.

2.3 Characteristics of variability

Definition 2.8 Characteristics of variability:

1. Variance of data file is

S2 =
1

n− 1

n∑

k=1

(xk − X̄)2 =
1

n− 1

r∑

i=1

fi(xi − X̄)2. (2.4)

2. Standard deviation is √
S2 = S ≥ 0. (2.5)
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3. Average deviation is

d̄ =
1

n

n∑

k=1

|xk − X̄| = 1

n

r∑

i=1

fi|xi − X̄|. (2.6)

4. Variational coefficient is

v =
S

X̄
. (2.7)

Remark 2.2 The variance is defined by 2.4, but for computation we can also

use

S2 =
1

n− 1

n∑

k=1

(x2k)−
n

n− 1
X̄2 =

1

n− 1

r∑

i=1

fix
2
i −

n

n− 1
X̄2. (2.8)

Remark 2.3 The data file represents n realzations of a random variable X.

All characteristics of location aproximates expectation of X. The variance of

data file aproximates the variance of X.
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Random sample

Types of random samples

a) Simple random sample with returning

b) Simple random sample without returning

c) Stratified random sample deviding the space into disjunct sets and making the

random sample within each set.

d) Systematic random sample every k-th element.

11
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Range of random sample

a) Small: n < 30.

b) Big: n ≥ 30.

We will be interested only in simple random sample with returning. It is:

Definition 3.1 The statistical sample Z, represents a random variable X.

Random sample from distribution of X, is n independent realizations of X,

which are given by independent random variables X1, X2, . . . , Xn, with same

distribution as X.

Definition 3.2 The charakteristics of statistical sample Z (random variable

X) will be called theoretical. Charakteristics obtained from empirical random

sample is called sample).

Definition 3.3 Let X1, . . . , Xn is a random sample from distribution with ex-

pectation µ and finite variance σ2.

X̄ =
1

n

n∑

i=1

Xi, S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2.
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X̄ is sample mean and S2 is sample variance.

Theorem 3.1

EX̄ = µ, VarX̄ =
σ2

n
, ES2 = σ2.

Theorem 3.2 Strong law of large numbers

X̄ → µ almost surely.

Convergence almost surely means, that exists only a set (A ⊂ Ω) of probability 0

(P(A)=0), for which the expression does not converge.

Theorem 3.3 Random sample from normal distribution Let X1, . . . , Xn

is random sample from N(µ, σ2), where σ2 > 0. Then

• X̄ ∼ N(µ, σ
2

n ).

• If n ≥ 2, then (n− 1)S2/σ2 ∼ χ2
n−1.

• If n ≥ 2, then X̄ and S2 are independent.

• If n ≥ 2, then X̄−µ
S

√
n ∼ tn−1.
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Parametres estimates

Point estimates of mean and variance: Theorem 3.1 says that

X̄ is unbiased estimate of mean µ (EX̄ = µ),

S2 is unbiased estimate of σ2.

Interval estimate

(Coeficient of reliability) q = 1− α. α is usually chosen 0.05, 0.01.

14



CHAPTER 4. PARAMETRES ESTIMATES 15

Definition 4.1 Let B1, B2 be such that for α ∈ (0, 1) holds

P (B1 ≤ β ≤ B2) = 1− α.

Then the interval [B1, B2] is called confidence interval for parameter β with

reliability 1− α.

Let B2 be such that for α ∈ (0, 1) holds

P (β ≤ B2) = 1− α.

Then the interval B2 is called upper confidence bound for parameter β

with reliability 1− α.

Let B1 be such that for α ∈ (0, 1) holds

P (β ≥ B1) = 1− α.

Then the interval B1 is called lower confidence bound for parameter β with

reliability 1− α.
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4.1 Confidence intervals for parametrs of normal distr.

Let X1, . . . , Xn be random sample from N(µ, σ2), parameter σ2 > 0 is not known.

Then by Theorem 3.3
X̄ − µ

S

√
n ∼ tn−1,

thus by definition of critical values of students distr. is

P

[
tn−1(α/2) ≤

X̄ − µ

S

√
n ≤ tn−1(1− α/2)

]
= 1− α,

By reordering we get bothsided confidence interval for mean µ of normal distr. with

reliability 1− α
[
X̄ − tn−1(1− α/2)

S√
n
, X̄ + tn−1(1− α/2)

S√
n

]
. (4.1)

confidence interval for variance σ2 can be derived similarly.

(n− 1)S2/σ2 ∼ χ2
n−1.
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P
[
χ2
n−1

(α
2

)
≤ (n− 1)S2/σ2 ≤ χ2

n−1

(
1− α

2

)]
= 1− α,

By reordering we get bothsided confidence interval for variance σ2 of normal distr.

with reliability 1− α [
S2(n− 1)

χ2
n−1

(
1− α

2

), S
2(n− 1)

χ2
n−1

(
α
2

)
]
. (4.2)
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4.2 Confidence interval for mean by use of CLT

If the variables do not have the normal distribution, we can not use the previous.

But if there are more vaiables, at least 20, we can use CLT.

Let X1, . . . , Xn be random sample from distribution with finite mean µ and

finite variance σ2. Then by Central limit theorem

X̄ − µ

S

√
n →n→∞ Φ ∼ N(0, 1)

has asymptoticaly normed normal distribution. By the definition of critical value

of the normed normal distribution is

P

[
−u(1− α

2
) ≤ X̄ − µ

S

√
n ≤ u(1− α

2
)

]
= 1− α,

by reordering we have bothsided confidence interval for mean µ with reliability 1−α
[
X̄ − u(1− α

2
)
S√
n
, X̄ + u(1− α

2
)
S√
n

]
. (4.3)
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Parametrical tests

Hypothesis: H0 (zero) against alternative H1.

Assume that distribution of the random variable depends on parametr θ.

The zero hypothesis is then

H0 : θ = θ0.

Alternative hypothesis can be either both sided alternative

H1 : θ 6= θ0,

19
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or one sided alternative

H1 : θ > θ0 or H1 : θ < θ0.

Two mistakes are possible:

We reject H0, but H0 is true - error of first kind.

We do not reject H0, but H0 is false - error of second kind.

We want both mistake to keep down!

Test:

Construct statistic T from random sample X1, X2, ...., Xn.

If T is in critical range W , we reject H0.

If T is not in critical range W , we do not reject H0.

We can control error of first kind only. We set the probability of this error to be

α ∈ (0, 1). Usually α = 0.05 or α = 0.01. α is called significance level of test.
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Remark 5.1 Nowadays the statistical software (Statistica, S+, SAS, R, Ex-

cel) gives reached level (called P-value, significance value). It is the smallest

level for which we still reject H0.

Thus if α = 0.05 is chosen and P-value is less than 0.05 (or equal), then

we reject H0 with significance level α = 0.05. If P-value is greater than 0.05,

then we do not reject H0 with significance level α = 0.05.
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5.1 One sample t test

Let X1, . . . , Xn, be random sample from N(µ, σ2), where n > 1. Parametr σ2 > 0

is not known. We want to test

H0 : µ = µ0,

where µ0 is given number, against the alternative

H1 : µ 6= µ0

. Hypothesis H0 is rejected if X̄ is rather far from µ0. Under H0 the statistic T

has

T =
(X̄ − µ0)

√
n

S
∼ tn−1

students distribution with n-1 degree of freedom. From definition of the critical

values, we have

P [|T | ≥ tn−1(1− α/2)] = α.

Thus H0 is rejected with significance level α, if

|T | ≥ tn−1(1− α/2).
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p-value is computed from the distribution function of t:

p = 2(1− Ftn−1
(|T |))

In case of one sided alternative H1 : µ > µ0, resp. H1 : µ < µ0 is H0

rejected, if

T ≥ tn−1(1− α), resp. T ≤ −tn−1(1− α).

p-value of the one sided test is:

p = 1− Ftn−1
(T ), resp. p = Ftn−1

(T )



CHAPTER 5. PARAMETRICAL TESTS 24

5.2 Test about variance of normal distribution.

Let X1, . . . , Xn, be random sample from N(µ, σ2), where n > 1. We want to test

H0 : σ
2 = σ2

0,

where σ2
0 is given number, against the alternative

H1 : σ
2 6= σ2

0

. H0 is rejected, if S
2 is rather far from σ2

0. Under H0 the statistic T has

T =
(n− 1)S2

σ2
0

∼ χ2
n−1

χ2 distribution with o n-1 degree of freedom. From definition of the critical values,

we have

P
[
χ2
n−1

(α
2

)
≤ (n− 1)S2/σ2

0 ≤ χ2
n−1

(
1− α

2

)]
= 1− α,

Thus H0 is rejected with significance level α, if

T ≤ χ2
n−1

(α
2

)
or T ≥ χ2

n−1

(
1− α

2

)
.
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p-value is computed from the distribution function of χ2:

p = min
(
2(1− Fχ2n−1

(T )), 2(Fχ2n−1
(T ))

)

In case of one sided alternative H1 : σ2 > σ2
0, resp. H1 : σ2 < σ2

0 is H0

rejected, if

T ≥ χ2
n−1(1− α), resp. T ≤ χ2

n−1(α).

p-value of the one sided test is:

p = 1− Fχ2n−1
(T ), resp. p = Fχ2n−1

(T )
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5.3 Paired t test

Consider random sample (Y1, Z1), (Y2, Z2), . . . , (Yn, Zn) from two-dimensional nor-

mal distribution with expectation (µ1, µ2). We want to test

H0 : µ1 − µ2 = ∆

against alternative H1 : µ1 − µ2 6= ∆, where ∆ is given number (usually ∆ = 0).

We set

X1 = Y1 − Z1, X2 = Y2 − Z2, . . . , Xn = Yn − Zn.

The variables X1, X2, ..., Xn are independent. Assume, that Xi ∼ N(µ, σ2), i =

1, 2, . . . , n, µ = µ1 − µ2. Thus the task is transferred to one sample t test. From

variables X1, X2, ..., Xn we calculate X̄ and S2. Then H0 is rejected with signifi-

cance level α, if

|T | =
∣∣∣∣
(X̄ −∆)

√
n

S

∣∣∣∣ ≥ tn−1(1− α/2).

p-value is:

p = 2(1− Ftn−1
(|T |))
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Paired t test is used in situations, when we have, for every object, from n

measured objects, 2 measuranments. The objects are independent but not mea-

suranments on one object. The paired t test is used for example, when we test

effectiveness of the medicanment on n patients, and Yi are measuranments before

and Zi after medicanment is taken.
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5.4 Two sample t test

Let X1, X2, . . . , Xn be random sample from N(µ1, σ
2) and Y1, Y2, . . . , Ym sample

from N(µ2, σ
2). Assume that the two random samples are independent. Assume

that n ≥ 2,m ≥ 2, σ2 > 0 and σ2 is not known. We want to test

H0 : µ1 − µ2 = ∆

against H1 : µ1 − µ2 6= ∆, where ∆ is given number (usually ∆ = 0). Denote

X̄, S2
X and Ȳ , S2

Y charakteristics of appropriate samples. Then H0 is rejected with

significance level α if

| T |=
∣∣∣∣∣

X̄ − Ȳ −∆√
(n− 1)S2

X + (m− 1)S2
Y

·
√

nm(n +m− 2)

n +m

∣∣∣∣∣ ≥ tn+m−2(1− α/2).

p-value is:

p = 2(1− Ftn+m−2
(|T |))

two sample t test is used, when n patients try medicanment A and other m

patients try medicanment B.
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Often one uses two sample instead of paired and vica verca. Remember that

two sample can be used only when independence of samples is satisfied.
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Assumptions: Independence - most important.

Normality - Greater sample - Since CLT - OK

Small sample - nonparametric tests must be used.

Homogeneity of variances in twosamle t test - is tested by the following test. If it

is not satisfied use weighted least squares methods.
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5.5 Test about homogeneity of two variances

LetX1, X2, . . . , Xn is a sample from N(µ1, σ
2
1) and Y1, Y2, . . . , Ym is a sample from

N(µ2, σ
2
2). Assume independance of samples and that n ≥ 2,m ≥ 2, σ2

1 > 0, σ2
2 >

0. We test the

H0 : σ
2
1 = σ2

2

against

H1 : σ
2
1 6= σ2

2

. Since S2
X is unbiased estimate of σ2

1 and S2
Y is unbiased estimate of σ2

2, we can

expect, that under H0 the fraction
S2
X

S2
Y

will be close to one. Thus H0 is rejected, if

S2
X

S2
Y

≤ k1 or
S2
X

S2
Y

≥ k2,

while

k1 = Fn−1,m−1(
α

2
) =

1

Fm−1,n−1(1− α/2)
, k2 = Fn−1,m−1(1−

α

2
),
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where Fn−1,m−1(α/2) is critical value of Fisher-Snedecor distribution with n-1 and

m-1 degree of freedom. p-value is:

p = min

(
2(1− FFn−1,m−1

(
S2
X

S2
Y

)), 2(FFn−1,m−1
(
S2
X

S2
Y

))

)
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5.6 Test about mean with use of CLT

We do not assume normality, but we need at least 20 or 30 data.

Let X1, . . . , Xn be random sample from a distribution with finite mean µ

and finite variance σ2. We test

H0 : µ = µ0,

where µ0 is given number, against alternative

H1 : µ 6= µ0.

Hypothesis H0 is rejected, if X̄ rather far from µ0. By CLT under H0 T has

asymptoticaly

T =
X̄ − µ0

σ0

√
n →n→∞ Φ ∼ N(0, 1)

normalized narmal distribution.

Again by definition of critical values is asyptoticaly

P
[
|T | ≤ u(1− α

2
)
]
= 1− α.
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Thus H0 is rejected with significance level α, if

|T | ≥ u(1− α

2
).

p-value is computed from distribution function of normalised normal distribution:

p = 2(1− Φ(|T |))

In case of one sided alternative H1 : µ > µ0, resp. H1 : µ < µ0 is H0

rejected, if

T ≥ u(1− α), resp. T ≤ −u(1− α).

p-value of the one sided test is:

p = 1− Φ(T ), resp. p = Φ(T )

In case when σ2
0 is not known, we use unbiased estimate S2 in computation

of T .
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ANOVA

6.1 One-way ANOVA

This is extension of twosample t-test for more than 2 samples. Assume I indepen-

dent samples,

Y11, ..., Y1n1 from N(µ1, σ
2)

...

YI1, ..., YInI from N(µI , σ
2).

We will test H0 : µ1 = . . . = µI against, that exist at least two means which are

35



CHAPTER 6. ANOVA 36

not equal.

We can write the model - H1:

Yij = µ + αi + eij,

where µ+αi = µi and eij ∼N(0, σ2) is the error. H0 can be rewritten to simplified

model:

Yij = µ + eij.

Test is done in following way. Denote

Y i =
Yi1 + ... + Yini

ni
pro i = 1, ..., I

Y =

∑
i

∑
j Yij

n
,

where n = n1 + . . . + nI . Total sum of squares ST is total square error under H0.

ST =
∑

i

∑

j

(Yij − Y )2 =
∑

i

∑

j

Y 2
ij − nY

2
.
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Residual sum of square Se is square error under H1.

Se =
∑

i

∑

j

(Yij − Y i)
2 =

∑

i

∑

j

Y 2
ij −

∑

i

niY
2
i .

SA = ST − Se is sum of squares contained in difference of samples. If SA is small,

then the models are simillar and H0 will not be rejected.

Under H0

FA =
(n− I)SA

(I − 1)Se
∼ FI−1,n−I

has F distribution with I − 1 and n − I degree of freedom. Thus H0 is rejected

with significance α if

FA ≥ FI−1,n−I(1− α).

Characteristic s2 = Se/(n−I) is called residual variance and it is an unbiased

estimator of the true variance σ2.

Assumption Independence, normality (can be broken for a lot observa-

tions) Homogeneity of all variances - Bartlett test. (Statistica - Anova - Assum-

tions)
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Variability sum of squares degree fraction
S of freedom f S/f F

differences SA fA = I − 1 SA/fA FA

residual Se fe = n− I Se/fe -
total ST ft = n− 1 - -

Table 6.1: ANOVA table

Remark 6.1 One can think of applying a set of I(I−1)/2 two sample t-tests,

instead of one way anova. But if every test would have significance α, the

common significance of all tests together would me much higher.

In the case of rejection H0, it is usually needed to decide which samples

are different. Tukey multiple comparison method (Statistica - Anova -

Post-hoc).

6.2 Anova - two ways

Model:

Yij = µ + αi + βj + eij, kde i = 1, . . . , I, j = 1, . . . , J (6.1)



CHAPTER 6. ANOVA 39

where µ, αi for i = 1, . . . , I and βj for j = 1, . . . , J are not known parameters

and eij ∼N(0, σ2) are errors. This means that Yij depend both on column and

row. Furthermore in each row we have same number of event. Two parameters are

needless therefore we set ∑

i

αi = 0,
∑

j

βj = 0.

We want to test H0 : α1 = . . . = αI = 0 (e.g. data does not depend on

rows), thus the simplified H0 model is one way anova:

Yij = µ + βj + eij.

(Statistica - Anova - Main Effects Anova)

In the case of rejection H0, it is usually needed to decide which samples

are different. Tukey multiple comparison method (Statistica - Anova -

Post-hoc).

Remark 6.2 More models:

More data for each group (Statistica - Anova - Main Effects Anova)

Yijp = µ + αi + βj + eijp, kde i = 1, . . . , I, j = 1, . . . , J, p = 1, . . . , P.
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Variability sum of squares degree ratio
S freedom f S/f F

rows SA fA = I − 1 SA/fA FA

columns SB fB = J − 1 SB/fB FB

residual Se fe = n− I − J − 1 Se/fe -
celkov ST ft = n− 1 - -

Table 6.2: Anova Table two-way anova

(Statistica - Anova - Main Effects Anova)

Interactions (Statistica - Anova - Factorial Anova):

Yijp = µ + αi + βj + λij + eijp.

Repeated measuranments - Here we assume dependence between obser-

vations in k-th level (Yijp1, ..., YijpK) - (Statistica - Anova - Repeated Measures

Anova):

Yijpk = µ + αi + βj + γk + λij + eijpk.



Chapter 7

Nonparametrics

In Statistica - nonparametrics statistics we can find nonparametric variations of

tests which were described in parametric chapters. Instead of expectations we

compare the whole distributions, but the tests are mainly sensitive for medians

only.

Two sample t-test ∼ Comparing two independent samples - usually Mann-

Whitney U test or Wilcoxon test is preferred.

One way ANOVA ∼ Comparing multiple independent samples - usually

Kruskal-Wallis test is preferred. Multiple comparison can be done here also.
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Paired t-test ∼ Comparing two dependent samples - usually Wilcoxon test

is preferred. When only data of character +1, -1 (better, worse) is available, then

sign test is appropriate.

2 way ANOVA ∼ Comparing multiple dependent samples - Friedmann test

is preferred.

Correlation ∼ Spearman correlation is preferred.



Chapter 8

Correlation analysis

Independence ⇒ the uncorrelatness ρ = 0.

Thus ifH0 : ρ = 0 is rejected, then we can reject also the hypothesis of unbiasedness.
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8.1 Sample correlation coefficient

We have random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from two dimensional dis-

tribution. The correlation coefficient is

ρ =
Cov(X, Y )√
VarX VarY

.

For estimates of Var X and Var Y we use sample variances

S2
X =

1

n− 1

n∑

i=1

(Xi − X̄)2, S2
Y =

1

n− 1

n∑

i=1

(Yi − Ȳ )2.

ES2
X = VarX and ES2

Y = VarY . Similarly we define sample covariance

SXY =
1

n− 1

n∑

i=1

(Xi − X̄)(Yi − Ȳ ),

here ESXY = Cov(X, Y ). Thus if S2
X > 0 and S2

Y > 0, we define sample correlation

coefficient r as

r =
SXY√
S2
XS

2
Y

.
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From Schwarz unequality −1 ≤ r ≤ 1.

r is not unbiased.

For (X1, Y1), (X2, Y2), . . . , (Xn, Yn) - twodimensional random sample from

normal distribution and Var X > 0, Var Y > 0, |ρ| < 1, we have that

Er = ρ− 1− ρ2

n
+ o(n−1),

where o(n−1) denotes function f (n), for which limn→∞
f(n)
n = 0.

We test now H0 : ρ = 0 against H1 : ρ 6= 0. Under H0 and assumption of

normal random samples has

T =
r√

1− r2

√
n− 2 ∼ tn−2

Students distribution with n − 2 degree of freedom. Thus H0 is rejected with

significance level α, in case that

|T | ≥ tn−2(1− α/2).

Here the normality is important assumption. If normality is not satisfied use

nonparametric Spearman correlational coefficient.



Chapter 9

Linear regression

9.1 Liner regression with one explanatory variable

Regression model

Y = f (x)

explains dependence of Y on values x through f . The aim of regression is to find

function f , from n observed pairs

(x1, y1), (x2, y2), . . . , (xn, yn),
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where xi are independent values, explanatory variable x and yi are dependent

values, ascribed variable Y . Assume that yi are measured with error ei.

For point estimates no further assumption is needed.

For interval estimates and test we assume normality of error - N(0, σ2).

Thus we have n independent equations

Yi = f (xi) + ei, i = 1, 2, . . . , n.

Linear regression

f (x) = β0 + β1 · x.

We want to estimate parameters β0 and β1. This is done by least square method.

We search β0 and β1 for which the sum of squares of errors is minimal. Thus we

are looking for minimum of

g(β0, β1) =
n∑

i=1

(Yi − (β0 + β1 · xi))2.
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Thus we solve the set of equations

δg(β0, β1)

δβ0
= 0,

δg(β0, β1)

δβ1
= 0.

The result is

b1 =

∑
(xi − x) · Yi

(xi − x)2
=

∑
xiYi − nxY∑
x2i − nx2

, b0 = Y − b1 · x, (9.1)

where x = 1
n

∑
xi and Y = 1

n

∑
Yi. Estimates b0, b1 are best unbiased estimates,

e.g. b0, b1 are unbiased (Eb0 = β0, Eb1 = β1) and have the smallest variance from

all unbiased estimators.

Minimum of g

Se = g(b0, b1) =
∑

(Yi − (b0 + b1 · xi))2 =
∑

Y 2
i − b0

∑
Yi − b1

∑
xiYi

is called residual sum of squares. The estimator of variance of errors σ2 is

s2 =
Se

n− 2
.
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Total sum of squares

ST =
∑

(Yi − Y )2

express total square error of regression model.

The appropriateness of the model is expressed in coefficient of

determination

R2 = 1− Se

ST
=

ST − Se

ST
,

which express which part of total error ST is explained by the regression model. (Se

contains, what the regression model does not explain). It can be calculated also by

R2 =

∑
(Ŷi − Y )2∑
(Yi − Y )2

,

where Ŷi = f̂ (xi) = b0 + b1 · xi is regression estimate in xi. As close is R
2 to 1, as

better the model is.

The most common question is, if the model can be simplified, so that Yi do

not depend on xi. We test

H0 : β1 = 0 against H1 : β1 6= 0
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Under H0 has

T =
b1
s
·
√∑

x2i − nx2 ∼ tn−2

students distribution with n−2 degree of freedom. Thus if |T | ≥ tn−2(1−α/2) we

rejectH0 with significance α. If thisH0 is rejected we confirm the linear dependence

of Yi on xi, which is masked by random errors ei.

Confidence interval By standard approach we make confidence interval

of β1 with reliability 1− α:(
b1 −

tn−2(1− α/2)s√∑
x2i − nx2

, b1 +
tn−2(1− α/2)s√∑

x2i − nx2

)
.

Often we need confidence interval for β0 + β1x:(
b0 + b1x− tn−2(1− α/2)s

√
1

n
+

(x− x)2∑
x2i − nx2

, b0 + b1x + tn−2(1− α/2)s

√
1

n
+∑

This interval cover the value β0 + β1x with probability 1 − α. Such intervals

constructed for all x ∈ [min xi,max xi], is called belt of reliability around

regression function.
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Example 9.1 The number of hours in use in month (xi) the expenses (Yi).
xi 275 350 250 325 375 400 300

Yi 149 170 140 164 192 200 165

280 300 320 340 360 380 400

140

160

180

200

Figure 9.1:

Interpretation of model: Absolute term b0 - estimates fix expenses, in-

dependent of length of use. Linear term b1x estimates variable expenses per

hour of use.
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9.2 Linear regression with more explanatory variables

We assume model:

Y = β0 + β1X1 + ... + βkXk. (9.2)

For n observations, we have n equations with k+1 unknowns:

Yi = β0 + β1Xi1 + β2Xi2 + ... + βkXik + ei, where i = 1, 2, ..., n, (9.3)

Here ei are random errors. For point estimates no further assumption is needed.

For interval estimates and test we assume normality of error - N(0, σ2).

In matrix form we have

Y = Xβ + e,

where

Y =




Y1

Y2
...

Yn


 ,X =




1 X11 . . . X1k

1 X21 . . . X2k
... ... ... ...

1 Xn1 . . . Xnk


 , β =




β0
β1
...

βk


 , e =




e1
e2
...

en


 . (9.4)
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The aim is to estimate parameters β0, β1, β2, ..., βk. Again by least square method.

We minimize

g(β0, β1, ..., βk) =
n∑

i=1

(Yi − (β0 + β1Xi1 + β2Xi2 + ... + βkXik))
2. (9.5)

Thus we set the partial derivative to be zero

∂g(β0, β1, ..., βk)

∂β0
= 2

n∑

i=1

(Yi − (β0 + β1Xi1 + β2Xi2 + ... + βkXik))(−1) = 0

a

∂g(β0, β1, ..., βk)

∂βj
= 2

n∑

i=1

(Yi − (β0 + β1Xi1 + β2Xi2 + ... + βkXik))(−Xij) = 0,

where j = 1, 2, ..., k.
...

nβ0 + β1

n∑

i=1

Xi1 + β2

n∑

i=1

Xi2 + ... + βk

n∑

i=1

Xik =

n∑

i=1

Yi
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β0

n∑

i=1

Xi1 + β1

n∑

i=1

X2
i1 + β2

n∑

i=1

Xi2Xi1 + ... + βk

n∑

i=1

XikXi1 =

n∑

i=1

YiXi1

...

β0

n∑

i=1

Xik + β1

n∑

i=1

XikXi1 + β2

n∑

i=1

XikXi2 + ...+ βk

n∑

i=1

X2
ik =

n∑

i=1

YiXik. (9.6)

Solving this set of equations gives estimates b0, b1, ..., bk of parameters β0, β1, β2,

In matrix form

(XTX) · β = XTY. (9.7)

If (XTX) is regular (e.g. there exists an inverse (XTX)−1), then the estimator

of parameters β = β0, β1, β2, ..., βk is

b = (XTX)−1XTY. (9.8)

The minimum of g is called residual sum of squares

Se = g(b) =
∑

(Yi − (b0 + b1xi1 + b2xi2 + . . . + +bkxik))
2 =

∑
(Yi − Ŷi)

2,
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where Ŷi = b0 + b1xi1 + b2xi2 + . . . + bkxik is regression estimate of value Yi. The

estimator of variance of errors σ2 is s2 = Se
n−k−1. s

2 is called residual variance.

Total sum of squares

ST =
∑

(Yi − Y )2

express total square error of regression model.

The appropriateness of the model is expressed in coefficient of

determination

R2 = 1− Se

ST
=

ST − Se

ST
,

which express which part of total error ST is explained by the regression model. (Se

contains, what the regression model does not explain). It can be calculated also by

R2 =

∑
(Ŷi − Y )2∑
(Yi − Y )2

,

where Ŷi = f̂ (xi) = b0 + b1 · xi is regression estimate in xi. As close is R
2 to 1, as

better the model is.
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Confidence interval with reliability 1− α for parameters βi is interval(
bi − tn−k−1(1− α/2) · s

√
(XTX)−1

ii , bi + tn−k−1(1− α/2) · s
√

(XTX)−1
ii

)
,

(9.9)

where (XTX)−1
ii is element of matrix (XTX)−1, in i-th line and i-th column.

The most common question is if we can simplify the model so that the values

Yi do not depend on xij for certain j. We test

H0 : βj = 0 against H1 : βj 6= 0

Under H0

T =
bj

s ·
√

(XTX)−1
jj

∼ tn−k−1 (9.10)

has students distribution with n−k−1 degree of freedom. Thus if |T | ≥ tn−k−1(1−
α/2) we reject H0 with significance α.

Sometimes we ask, if more than one explanatory variable can be release. It is

not possible to use two previous tests, because its common significance level would

not be α.
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We test

H0 : βj1 = βj2 = . . . = βjl = 0, 1 ≤ j1, . . . , jl ≤ k

against alternative that simplified model is not true (e.g. that at least one βji 6= 0).

Number l is the number of parameters to be released. Matrix form of the simplified

model is

Y = X̃β̃ + ẽ,

where matrix X̃ is constructed from X by releasing of columns appropriate to

βj1, βj2, . . . , βjl. Vector β̃ is constructed from βby releasing βj1, βj2, . . . , βjl. Simi-

larly ẽ.

Parameters of simplified model β̃ are estimated by

b̃ = (X̃TX̃)−1X̃TY. (9.11)

Then the residual sum of squares is calculated for simplified model

S̃e =
∑

(Yi − ˜̂
Yi)

2,
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where
˜̂
Yi is regression estimator of Yi in simplified model. It is obvious, that S̃e ≥

Se.

Under H0

F =
(n− k − 1)(S̃e − Se)

lSe
∼ Fl,n−k−1

has Fl,n−k−1 distribution. Thus if F ≥ Fl,n−k−1(1−α) we rejectH0 with significance

α and we can not simplify the model.

9.3 Polynomial regression

Quadratic regression:

Yi = β0 + β1 ·Xi + β2 ·X2
i + ei, i = 1, 2, ....., n,

kde ei ∼ N(0, σ2), n ≥ 4. Here Yi depends quadraticly on Xi.

If we set Zi = X2
i , i = 1, 2, ....., n we have model

Yi = β0 + β1 ·Xi + β2 · Zi + ei, i = 1, 2, ....., n.
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Here Yi depends linearly on Xi and Zi. So the quadratic task were replaced by

linear.

Similarly the regression of higher order.

9.4 Non-linear regression

Yi = f (Xi, β) + ei, i = 1, 2, ....., n,

where f is regression function and β is vector of unknown parameters. The estimate

of β can be found again by least square method, by minimizing

S(β) =
n∑

i=1

(Yi − f (Xi, β))
2.

This can be solved by statististical software iteratively.

Starting approximation can be found for linearizable models e.g. models

which can be transformed to linear. As an example we look at exponential function:

Yi = β0e
β1Xi + ei, i = 1, 2, ....., n.
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In starting approximation we forget the errors ei and make logarithm

lnYi = ln β0 + β1Xi, i = 1, 2, ....., n.

Now with new parameters α0 = ln β0 and α1 = β1, we have linear regression

lnYi = α0 + α1Xi, i = 1, 2, ....., n.

Some examples of linearizable models:

1. Y = eβ0+β1X

2. Y = β0X
β1

3. Y = β0 + β1 ln x

4. Y = ln(β0 + β1X)

5. Y = 1
β0+β1X
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9.5 Transformation of the data

Logarithm of the data makes multiplicative model. The data are influenced by

covariates in a multiplicative way.

lnY = β0 + β1X + ei

Y = eβ0+β1X+ei

Y = eβ0eβ1Xeei

Power transformations Y λ can help to achieve normality.



Chapter 10

Distribution tests - goodness of fit tests

10.1 Testing normality

For test of normality - use: Distribution fitting - normal - Plot of observed and

expected distribution.

There are two common tests of normality - χ2 test and Kolmogorov-Smirnov

test. Use option. I prefer χ2 test for its generality and power.

Here can be fitted also other distributions.

When one perform an residual analysis, usually the informative plot - Normal
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probability plot of residuals is use to see the deviation of residuals from normal

distribution. The deviation here detects either wrong model selection or the non-

normality of the residuals.

When we are comparing means of variables and normality is not satisfied and

we have just few data, then nonparametric statistics must be used.

Checking serial correlation: Durbin-watson test in residuals analysis in

regression detect the serial correlation between data. If it detects serial correlation,

the data are not independent and the time series analysis has to be performed.

Unfortunately in Statistica is computed only d statistics. As far is d from 2 as

bigger the serial correlations are.

10.2 Pearsons χ2 test

Use observed versus expected frequencies when you want to perform χ2 test with

known theoretical frequencies. The description of this test follows.

It can be used for example for controlling of random numbers generator,

controlling the dice, controlling if you catch same number of fishes in day and in



CHAPTER 10. DISTRIBUTION TESTS - GOODNESS OF FIT TESTS 64

night, ...

Let Z1, . . . , Zn be random sample, where Zj, j = 1, . . . n can have values

1, . . . , k. The variables Xi, which gives the number of accurences of the result i,

will be called empirical frequencies. Random vector X1, . . . , Xk has multinomial

distribution. We wil test the hypothesis H0, that theoretical probabilitie of multi-

nomial distribution are equal to the numbers p1, ..., pk. The variables npi will be

called theoretical frequencies. Under H0 the statistics

χ2 =

k∑

i=1

(Xi − npi)
2

npi
∼ χ2

k−1

has asymptotically χ2 distribution with k − 1 degree of freedom. We reject H0

when

χ2 ≥ χ2
k−1(1− α),

with significance α.

The χ2 is asymptotical, therefore it can be done only when n is big enough.

Usually the test is accepted when
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npi ≥ 5q for all i = 1, ..., k and k ≥ 3,

where q is ration of classes, for which npi < 5, and n.



Chapter 11

Contingency tables - Analyzing discrete data

What is contingency table:

Consider random vector Z = (X, Y ), which has discrete distribution. X has

values 1, ..., r and Y has values 1, ..., c. X and Y corresponds to certain property

(for example sex, education...).

The properties can be

• qualitative

• discrete quantitative
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• continuous quantitative with values in classes

Denote probabilties of distribution of Z = (X, Y ):

pij = P (X = i, Y = j), pi. = P (Y = i) =
c∑

j=1

pij, p.j = P (Z = j) =
r∑

i=1

pij.

Consider a random sample of range n from upper distribution. Number of

cases, when (i, j) appered in the sample will be denoted by nij (absolute, empirical

frequency). Random variables nij have multinomial distribution with parameters n

and pij. Contingency table is then the matrix (nij). Contingency table is in Table

11.1 with matrix of probabilities (pij), while

ni. =

c∑

j=1

nij, n.j =

r∑

i=1

nij, n =

r∑

i=1

c∑

j=1

nij

and
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n =

c∑

j=1

n.j =

r∑

i=1

ni. =

r∑

i=1

c∑

j=1

nij.

Z
Y 1...c

∑

1 p11...p1c p1.
... ............ ...
r pr1 ... prc pr.∑

p.1 ... p.c 1

Z
Y 1...c

∑

1 n11...n1c n1.

... ............ ...
1 nr1 ... nrc nr.∑

n.1 ... n.c n

Table 11.1: Left: matrix of probabilities, right: Contingency table

The following hypothesis can be tested

• hypothesis of independence of properties X and Y

• hypothesis of homogenity

• hypothesis of symetry

• hypothesis of homogenity for repeated measurenment - McNemars test
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11.1 Test of independence

H0: X (1. property) and Y (2. property) are independent

H1: X and Y are not independent.

Theorem 11.1 X and Y are independent if and only if pij = pi.p.j, i =

1, ..., r; j = 1, ..., c.

Thus hypothesis of independence can be rewritten into

H0 : pij = pi.p.j, i = 1, ..., r; j = 1, ..., c.

Under H0 statistic

χ2 =

r∑

i=1

c∑

j=1

(nij −
ni.n.j

n
)2

ni.n.j
n

(11.1)

has asymptotically distribution χ2 with (r − 1)(c − 1) degree of freedom. H0 is

rejected if χ2 ≥ χ2
(r−1)(c−1)(1− α).
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The χ2 is asymptotical, therefore it can be done only when n is big enough.

Usually the test is accepted when
ni.n.j
n ≥ 5q for all i = 1, ..., k and k ≥ 3,

where q is ration of classes, for which
ni.n.j
n < 5, and n. If this is not satisfied some

raws or columns must be combined. That is not possible for 2 × 2 contingency

table. In such case Fishers factorial test can be used.

11.2 Test of homogenity

Or test about sameness of structure. This test sameness of one property under

different condition, which are expressed by second property. For example if length

distribution of catched fish is same in night and day.

H0: probability pi1, ..., pic do not depend on the raw index i

(e.g. all raws of matrix pij are same)

Probabilities pi1, ..., pic corespond relative frequencies in i-th raw of contin-

gency table
ni1

ni.
, ...,

nic

ni.
, here pi1 + ... + pic = 1 and furthermore we assume that
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raw frequencies ni are set before experiment.

For testing the homogenity we again use statistic χ2 equation 11.1. Under

H0 has χ
2 asymptoticaly χ2 distribution with (r− 1)(c− 1) degree of freedom. H0

is then rejected if χ2 ≥ χ2
(r−1)(c−1)(1− α).



Chapter 12

Further modeling

General linear models - union of ANOVA and regression. The factors can be either

continuous and discrete.

Generalized linear models - Generalization of general linear models, the data can

have different then normal distribution.

For count data Poisson distribution is used.

For discrete data Multinomial distribution is used.

For continuous data one can often use Gamma distribution.
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