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1.1 Definition of probability

Definition 1.1 Classical definition: Let A1, ... , An be random events,

such that

• every time one and only one random event happen,

• all the event are equally probable.

And let the event A happen if happen one of the event Ai1, ... , Aik. Then the

probability of A is P (A) = k/n.

1.1.1 Kolmogorov definition of probability

Probability space (Ω,A, P ).

Ω is nonempty set of all results of the random experiment, results are ω.

A is σ-algebra on Ω. (The set of all ”nice” subsets of Ω)

P : A → R is function giving every set A ∈ A its probability (0 ≤ P (A) ≤ 1,

P (Ω) = 1). This is probability measure.
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Rules

P (AC) = 1− P (A)

P (A ∪B) = P (A) + P (B), if A, B are disjoint

P (A ∪B) = P (A) + P (B)− P (A ∩B)
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Examples

1. A phone company found that 75% of customers want text messaging, 80%

photo capabilities and 65% both. What is the probability that customer will

want at least one of these?

2. What is the probability, that there exists two students, in a class with n stu-

dents, who have the birth dates in a same day.

3. Two boats, which uses same harbor, can enter whenever during 24 hours. They

enter independently. The first boat stays 1 hour, second 2 hours. What is the

probability, that no boat will has to wait to enter the harbor.

4. Student choose 3 questions from 30 during an exam. There are 10 questions

from algebra, 15 from analysis and 5 from 5 geometry. What is the probability,

that he choose at least two questions from the same area.
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1.2 Conditional probability

Definition 1.2 Let (Ω,A, P ) is probability space and A, B are random events,

where P (B) > 0. We define the conditional probability of A under the condi-

tion B by relation

P (A|B) =
P (A ∩B)

P (B)
. (1.1)

1.3 Independence

Consider now two random events A and B. If the following holds

P (A|B) = P (A) a P (B|A) = P (B), (1.2)

then we speak about its independence. From (??) wee see, that the probability of A

under the conditionB do not depend onB and vica versa. From (??) and definition

of conditional probability we have the following definition of the independence.
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Definition 1.3 Random events A and B are independent, if

P (A ∩B) = P (A) · P (B). (1.3)

Theorem 1.1 Let A1, . . . , An are independent. Then

P (∪ni=1Ai) = 1−
n∏
i=1

[1− P (Ai)]. (1.4)

Rule: When A and B are not independent, one can use:

P (A ∩B) = P (A|B)P (B).
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Examples

1. A phone company found that 75% of customers want text messaging, 80%

photo capabilities and 65% both. What are the probabilities that a person

who wants text messaging also wants photo capabilities and that a person who

wants photo capabilities also wants text messaging?

2. The players A and B throw a coin and they alternate. A starts, then B, then

A, .... The game ends when the first one obtain head on the coin. What is the

probability of winning of A and B.

3. The probability that one seed grow up is 0.2. You have 10 seeds. What is

the probability that exactly 1 seed grow up. (2 seeds, ...) What is the most

probable result?

4. The probability that one seed grow up is 0.2. How many seeds you have to use,

to have 99% probability, that at least 1 seed will grow up.
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1.4 Bayes theorem

Theorem 1.2 (Total probability) Let A1, A2, . . . are random events which

partition Ω, i.e.

Ai ∩ Aj = ∅, ∀i 6= j a ∪∞i=1 Ai = Ω.

These random events have the probabilities P (A1), P (A2), . . ., where P (Ai) >

0, ∀i = 1, 2, . . . Assume an event B, where we know the conditional probabili-

ties

P (B|Ai), ∀i = 1, 2, . . .

Then

P (B) =

∞∑
i=1

P (Ai) · P (B|Ai). (1.5)

Theorem 1.3 (Bayes theorem) Assume the same assumption as in Theo-

rem ??. Then

P (Ai|B) =
P (B|Ai) · P (Ai)∑∞
j=1 P (Aj) · P (B|Aj)

, i = 1, 2, . . . (1.6)
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Example 1.1 During examination of a patient there is suspicion on 3 dif-

ferent ilnesses. Probability of accurence of the first ilness is 0,3, second 0,5

and third 0,2. Laboratory gives positive result for 15% of people having first

ilness, for 30% of people having second ilness and for 30% of people having

third ilness. What is the probability that a patient has second ilness under the

condition of the positive test?

Remark 1.1 Probabilities P (A1), P (A2), . . . are called apriory and events A1, A2, . . .

are called hypothesis. Probabilities P (Ai|B) are called aposteriory.

Example 1.2 (AIDS). Two posible errors in the blood test

1. Test falsly indicate positivity,

2. Test falsly indicate negativity.

P (Pos|Inf ) = 0, 995, thus, probability of the error of the first kind is P (Neg|Inf ) =

0, 005.



CHAPTER 1. PROBABILITY THEORY 10

P (Neg|NeInf ) = 0, 995 thus, probability of the error of the second kind is

P (Poz|NeInf ) = 0, 005.

P (Inf |Poz)?

P (Inf |Poz) =
P (Poz|Inf ) · P (Inf )

P (Poz|Inf ) · P (Inf ) + P (Poz|NeInf ) · P (NeInf )
.

Apriory probabilities:

P (Inf ) = 0, 001 a P (NeInf ) = 0, 999.

Aposteriory probabilities:

P (Inf |Poz) =
0, 995 · 0, 001

0, 995 · 0, 001 + 0, 005 · 0, 999
= 0, 16.
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Examples

1. The test is made in four classes. 75% of the students pass in the first class (50

students). 50% of the students pass in the second class (35 students). 65% of

the students pass in the third class (40 students). 60% of the students pass in

the first class (30 students). What is a probability that a random student pass

the test?

2. There are 36 students in the class. 15 boys, 21 girls. 5 boys and 7 girls are

interested in economics. What is a probability that random child is interested

in economics?

3. Compute the probability in exercise 1) that a student is from the first class

under the condition that he/she passes the test.

4. The messages emited by Morse alphabet have the following statistics: If dot

is emited then in 1/10 cases comma is observed. If comma is emited then in

1/15 cases dot is observed. The dots and commas are emited with ratio 5:3.

What is a probability that emited was dot under the condition that observed
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is comma? What is a probability that emited was comma under the condition

that observed is dot?
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1.5 Random variables

Definition 1.4 Random variable is every measurable mapping X from

(Ω,A, P ) to R.

Definition 1.5 Distribution function F of a random variable X is given

by

F (x) = P (ω : X(ω) ≤ x).

Shortly

F (x) = P (X ≤ x).
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Discrete random variables

Random variable X can have maximally countably many values x1, x2, . . ..

P (X = xi) = pi, i = 1, 2, . . ..
∑
pi = 1.

Formulas:

P (X ∈ B) =
∑
i:xi∈B

pi.

Expectation X

EX =
∑
i

xipi. (1.7)

Expectation of a function of X

Eg(X) =
∑
i

g(xi)pi. (1.8)
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Basic distributions of discrete random variables

Alternativ distribution A(p) represents success/unsuccess of the experiment

0 < p < 1.

P (X = 1) = p, P (X = 0) = 1− p.
EX = p, Var(X) = p(1− p).

Binomial distribution Bi(n, p) represents number of successes in n indepen-

dent experiments. The probability of success is 0 < p < 1. In other words, binomial

distribution is sum of n independent alternative distributions.

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

EX = np, Var(X) = np(1− p).

Hypergeometric distribution HGeom(n,M,N) is used instead of Binomial

in experiments, where n represents number of draws without returning (Binomial

- n is with returning.) from box which has N elements, and M elements represent
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success. (Binomial M/N = p.) Hypergeometrical distribution then represents

number of success in this experiment.

P (X = k) =

(
M
k

)(
N−M
n−k

)(
N
n

) , k = 0, 1, . . . , n.

EX = n
M

N
, Var(X) = n

M

N

(
1− M

N

)
N − n
N − 1

.

Poisson distribution Po(λ) λ > 0 represents number of events which appear

in time of length t.

P (X = k) = e−λ
λk

k!
.

EX = λ, Var(X) = λ.

Geometrical distribution Geom(p) represents number of experiment until

first success appears. The probability of success is 0 < p < 1.

P (X = k) = p(1− p)k.
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EX =
1− p
p

, Var(X) =
1− p
p2

.
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Examples

1. The phone central connects 15 talks during one hour in average. What is the

probability that during 4 minutes it connects: a) exactly one talk, b) at least

one talk, c) at least two talks and in maximum 5 talks.

2. The man phone to phone central during the maximal load, when there is prob-

ability 0.25 to be connected. He repeat the experiments until he is successful.

Compute the probability of being connected during 5 try. Compute the expec-

tation of unsuccessful tries.

3. Compute the probability that among 136 products are at least 3 broken. We

know that there is 2.6% of broken products.

4. The restaurant gives to each meal a picture of the local basketball team (basic

set 5 players). Every time, you go in the restaurant, you obtain one picture in

random. How many times in average you have to go in the restaurant to have

whole set of pictures?
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Continuous random variables

Random variable X can have uncountably many values.

Density f (x) gives relative probability of occurrence x as a result of X .

Distribution function

F (x) =

∫ x

−∞
f (t)dt.∫ ∞

−∞
f (x)dx = 1.

Formulas:

P (X ∈ B) =

∫
B

f (x)dx.

Expectation X

EX =

∫ ∞
−∞

xf (x)dx. (1.9)

Expectation of a function of X

Eg(X) =

∫ ∞
−∞

g(x)f (x)dx. (1.10)



CHAPTER 1. PROBABILITY THEORY 20

Variance X (basic characteristic of dispersion of random variable) is given by

VarX = E(X − EX)2 = EX2 − (EX)2.

Variance is denoted also by σ2 and σ is then called standard deviation.

Theorem 1.4 Let Y = a + bX. If EX exists, then EY = a + bEX. Further-

more if EX2 <∞, then VarY = b2VarX.
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Basic distributions of continuous random variables

Uniform distribution on [A,B], U[A,B]. All points in the interval [A,B]

have the same probability of occurrence.

f (x) =
1

B − A
, pro x ∈ [A,B], f (x) = 0, jinak.

EX =
A + B

2
, Var(X) =

1

12
(B − A)2.

Exponential distribution Exp(λ) represents waiting time until certain event

appear, for example time until engine breaks down.

f (x) =
1

λ
e−x/λ, pro x > 0, f (x) = 0, jinak.

EX = λ, Var(X) = λ2.
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1.5.1 Normal distribution

Normal distribution with expectation µ and variance σ2 has density

f (x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, x ∈ R.

Figure 1.1: The plot of normal density - solid N(0,1), dashed N(0,2), dotted N(0,1/2).

The most important is normalised normal distribution N(0,1). Its density is

φ(x) =
1√
2π
e−x

2/2, x ∈ R
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and its distribution function is denoted by

Φ(x) =

∫ x

−∞
φ(u)du.

Function φ is even, thus Φ(−x) = 1− Φ(x).
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Examples

1. The durability of a product follow exponential distribution with expected value

3 years. How long should be the guarantee to have 10% of the product returned

during the guarantee time.

2. What is the probability, that a random variable U with distribution N(0,1) is

a) less than 1.64, b) more than -1.64, c) between -1.96 and 1.96, d) more than

2.33, e) less than -2.33.

3. The error of measurement follows N(0,σ2). How big is σ2, if we know, that the

probability, that the absolute value of the error is smaller than 1, is equal to

0.95.

4. Compute the expectation and the variance for the result of a classical dice.
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Theorem 1.5 Central limit theorem Let X1, . . . , Xn is progeression of in-

dependent identically distributed random variables with expectation µ and with

finite variance σ2. Then ∑n
i=1Xi − nµ√

nσ2

has for n→∞ asymptotically distribution N(0,1).
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Examples

1. The probability that the device breaks down during the test of device reliability

is 0.05. What is the probability that during testing of 1000 devices there will be

more than 75 devices broken down. 1) Use CLT. 2) Use Binomial distribution.

2. We throw 100 times by a die. Denote S100 the sum of these 100 results. Cal-

culate the probability

P (320 < S100 < 380).

3. The insurance company insures 1000 people of the same age. The probability

of death in this age is 0.01. In the case of death the company pay out 80000

CZK. What price of the insurance should be set in order to have 99% that the

company do not loose any money.

4. The time to repair one electricity issue on a electric suply has exponential

distribution with mean 4 hours. There was a big storm and 30 issue appeared

on the supply. What is the time which guarantee with 95% that all the issue

will be repaired?
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1.6 Random vectors

If random variablesX1, . . . , Xn are defined on the same probability space (Ω,A, P ),

then

X = (X1, . . . , Xn)T

is called random vector.

Distribution function of random vector is

F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn).

Expectation is EX = (EX1, . . . ,EXn)T .

We will work now only with two random variablesX, Y . For more random variables

it is analogous.

Discrete case: Common probability distribution is given by

P (X = (xi, yj)) = pij, i = 1, 2, . . . , j = 1, 2, . . . .
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Marginal distribution is distribution of the part of the vector. Let’s

pi =
∑
j

pij, pj =
∑
i

pij.

Thus the marginal distr. are:

P (X = xi) = pi, P (Y = yj) = pj, i = 1, 2, . . . , j = 1, 2, . . . .

Expected value of a function of the random vector is given by

Eg(X) =
∑
i,j

g(xi, yj)pij.

Continuous case: Common probability distribution is given by density

fX(x, y), x, y ∈ R.

Distribution function

F (x, y) =

∫ x

−∞

∫ y

−∞
f (u, v)dudv.
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Densities of marginal distributions are

fX(x) =

∫
R
f (x, y)dy, x ∈ R, fY (y) =

∫
R
f (x, y)dx, y ∈ R.

Expected value of a function of the random vector is given by

Eg(X) =

∫
R

∫
R
g(x, y)f (x, y)dxdy.

Covariance of random variables X and Y is

Cov(X, Y ) = E(X − EX)(Y − EY ) = EXY − EXEY.

It is clear, that VarX = Cov(X,X). Covariance of random variables X and Y is

denoted by σXY .

Theorem 1.6

E(X + Y ) = EX + EY,
Var(X + Y ) = VarX + 2Cov(X, Y ) + VarY,

if all expressions on the right hand side exist.
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We say that two random variables X and Y are independent, if

FX,Y (x, y) = FX(x)FY (y).

In continuous case it is equivalent to

fX,Y (x, y) = fX(x)fY (y) ∀ x, y.

In discrete case it is equivalent to

pij = pipj ∀ i, j.

This is a mathematical definition of the term independence which is commonly used

in speech.

Theorem 1.7 Let X and Y are independent random variables with finite ex-

pectations. Then

E(XY ) = (EX)(EY ).

Theorem 1.8 Let X and Y are independent random variables with finite vari-

ances. Then

Cov(X, Y ) = 0.
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If Cov(X, Y ) = 0, then we say that random variables are uncorrelated. The

uncorrelateness does not imply independence! But the previous theorem is often

used in tests of independence. Instead of covariance, there is used its normalized

version correlation coefficient:

ρ =
Cov(X, Y )√

Var(X)Var(Y )
.

Theorem 1.9 It holds −1 ≤ ρ ≤ 1. Furthermore ρ = 1, iff Y = a + bX,

b > 0. A ρ = −1, iff Y = a + bX, b < 0.
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Examples

1. The bank company runs two products both with expected profit µ and variance

of the profit σ2. Compute the expected profit of the company and variance of

the profit of the company if a) the products are independent, b) the products

are positively correlated with ρ = 1/2 and c) the products are negatively

correlated with ρ = −1/2.

2. Compute the expectation and the variance of the sum of results on 10 inde-

pendent dice.

3. The box contains 2 white balls and 2 black balls, we choose 2 balls without

returning. The random variable X is 1 if the first ball is white and 0 otherwise.

The random variable Y is 1 if the second ball is white and 0 otherwise. De-

termine common distribution of (X, Y ), compute marginal distributions and

determine if the random variables are independent.

4. The same experiment as above. Determine common distribution of (X, Y ) and

compute EX,EY,VarX,VarY, ρ.
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1.7 Distributions derived from normal distribution

Gama and Beta function.

Γ(a) =

∫ ∞
0

xa−1 · e−xdx, a > 0

Properties: Γ(a + 1) = a · Γ(a), Γ(1
2) =

√
π

B(a, b) =
Γ(a) · Γ(b)

Γ(a + b)

1.7.1 Pearson distribution

Let U1, U2,..., Uk are i.i.d. with N(0,1). Then

χ2
k =

k∑
i=1

U 2
i
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has χ2 with k degrees of freedom. The density (for u > 0) is

fk(u) =
1

Γ(k/2) · 2k/2
· u(k/2)−1 · e−u/2, u > 0.

Eχ2
k = k, Var χ2

k = 2k.

Figure 1.2: The plot of the density of Pearson distribution - solid χ2
10, dashed χ2

20, dotted χ2
5.
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1.7.2 Student distribution

U is N(0,1) random variable

V is χ2 r. v. with k degree of freedom.

U, V are independent, then

Tk =
U√
V
·
√
k

has Student distribution t with density

fk(t) =
1

B(1
2,

k
2) ·
√
k
· (1 +

t2

k
)−(k+1)/2, t ∈ R

with k degree of freedom.

ETk = 0, Var Tk =
k

k − 2
, tk →k→∞ Φ.
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Figure 1.3: The density plot of Student distribution - solid N(0,1), dashed t10, dotted t5.

1.7.3 Fisher-Snedecor distribution.

U is χ2 with k degree of freedom,

V is χ2 with n degree of freedom.

U, V are independent, then

Fk,n =
U/k

V/n
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has Fisher-Snedecor distribution with k and n degreeof freedom with density

fk,n(z) =
1

B(k2 ,
n
2)
·
(
k

n

)k/2
· z(k−2)/2

(1 + z · kn)(k+n)/2
, z > 0.

EFk,n =
n

n− 2
, Var Fk,n =

2n2(n + k − 2)

(n− 2)2(n− 4)k
.

Figure 1.4: The density plot of Fisher-Snedecor distribution - solid F10,10, dashed F20,10, dotted F5,10.
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1.8 Critical values

Critical value is the border which random variable exceed with a given probability

α. The Excel functions are NORM.INV, CHI.INV, T.INV, F.INV.

Critical value of normal distribution u(α)

X ∼ N(0, 1), P [X ≤ u(α)] = α.

Critical value of Pearson distribution χ2
k(α)

X ∼ χ2
k, P [X ≤ χ2

k(α)] = α.

Critical value of Student distribution tk(α)

X ∼ tk, P [X ≤ tk(α)] = α.

Critical value of Fisher-Snedecor distribution Fk,n(α)

X ∼ Fk,n, P [X ≤ Fk,n(α)] = α.


